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Abstract—Data quality is pivotal for the performance of data-
driven model predictive control systems. While traditional data
processing methods, such as cleaning and enrichment, are neces-
sary, they do not always improve the controller performance. To
tackle this problem, this paper introduces a new data selection
method specifically designed for data-driven model predictive
control. It includes a controller performance evaluation approach
that assesses the quality of the current data, enabling the
controller to select a set of informative data elements that enhance
its performance. Additionally, a sliding window mechanism is
implemented to compare current data against historical data,
preventing the loss of significant patterns or trends. A simulation
example illustrates the effectiveness of the proposed data selection
method.

Keywords—Data selection, controller performance evaluation,
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I. INTRODUCTION

Model predictive control(MPC) is one of the most preva-

lent advanced control strategies employed in today’s process

industry, such as robotics [1], crude distillation [2] and auto-

motive driving [3]. It obtains better control performance while

satisfying the system constraints.

Traditional MPC provides stability against minor model

mismatch and disturbance. Yet, as these mismatches or dis-

turbances grow, the closed-loop system can become unstable,

potentially leading to divergence of the state. To tackle the

difficulty of managing systems with constraints under uncer-

tain model parameters, the concept of robust MPC has been

introduced [4]. This approach, while enhancing robustness,

often introduces a level of conservatism that affects the control

performance [5].

To address the conservatism inherent in robust MPC, re-

searchers have incorporated data into the model update pro-

cess or controller design. Historical data, rich with dynamic

information about unknown models, can be harnessed to

estimate models for systems with undisclosed parameters. This

adaptive MPC technique has been extensively implemented

in industrial settings, yielding positive feedback in terms of

control effectiveness [3]. However, the online identification

process does require a significant allocation of computational

resources.

Another type of method bypasses model identification, using

data to design the MPC controller directly. It is simple and

effective. Data-driven MPC strategies are categorized as offline

or online, depending on the data source. In industrial systems,

the dynamic operating points of the equipment may not be

completely represented by offline data. In contrast, online

data refreshment enables the system to adapt to the system’s

changing dynamics in real time, which is why online data-

driven MPC is increasingly favored [6].

An online data-driven input-mapping method is proposed

in [7], which uses a linear combination of historical input data

and an additional free input to determine the current control

input. In [8], a data selection strategy is proposed, aimed at

filtering linearly independent data vectors to minimize the data

required to predict the system’s future trajectory. Meanwhile,

[9] presents a similarity index for assessing the resemblance

between current and previously stored past data. Despite these

advancements, the controller’s performance was not factored

into the data selection process. Nevertheless, the performance

of data-driven MPC is greatly influenced by the quality of the

prior knowledge database as well as its quantity[10].

At present, there are many research results on controller

performance evaluation, such as minimum variance control

benchmark [11], linear quadratic Gaussian benchmark [12],

and generalized minimum variance control law [13]. However,

these methods all depend on predefined models. In [14], a

period of reference data from the process with satisfactory con-

trol performance is used as a benchmark. The key limitation

of this method, however, is that it relies on prior knowledge

for selecting the reference data. As far as we are aware, there

is currently no research that integrates online data-driven data

selection with controller performance evaluation.

In this paper, we design a data selection method for uncer-

tain systems within the data-driven MPC strategy, which does

not rely on certain models. We utilize process data to evaluate

data quality, employing the ratio of differences between the

current and previous loss functions to assess whether the



current data enhances controller performance. The approach

from [9] focuses solely on comparing current data to historical

data, which may lead to the omission of significant data and

the loss of critical patterns or trends. To address this, we

incorporate a sliding window strategy, commonly employed in

data stream mining [15]. By implementing this, we maintain

a collection of high-quality data items over a period, ensuring

that optimal data sets are identified and that valuable data is

not systematically excluded.

The rest of this paper is organized as follows. The problem

formulation is presented in Section 2. In Section 3, a novel data

selection method for the data-driven MPC strategy is proposed.

Section 4 provides an example to demonstrate the efficacy of

the methods proposed in this paper. Finally, Section 5 presents

key conclusions drawn from the study.

Notation: Let R, Rn, and N denote the field of real numbers,

n-dimensional real space, and the set of non-negative integers,

respectively. Let N[a,b] = {a, a + 1, · · · , b}, for a, b ∈ N. Let

N≥a = {a, a+ 1, · · · }, for a ∈ N. Co{·} denotes the convex

hull. Given a symmetric matrix P , P ≻ 0 means that the ma-

trix P is positive definite. For a column vector x and a matrix

P ≻ 0 with appropriate dimensions, ‖x‖2P = xTPx. For col-

umn vectors x1, · · · , xn, col[x1, · · · , xn] = [xT
1 , · · · , x

T
n ]

T .

‖ · ‖2 denotes 2-norm.

II. PROBLEM FORMULATION

Consider the discrete-time uncertain system as follows

x(k + 1) = Ax(k) +Bu(k) + d(k), (1)

and the system constraints satisfy

Fx(k) +Gu(k) ≤ 1, (2)

where x(k) ∈ R
nx , u(k) ∈ R

nu , and d(k) ∈ R
nx represent

the state, the control input, and the disturbance, respectively. A

and B are both unknown matrices, which satisfy the following

assumption.

Assumption 2.1: The system matrices satisfy A = A0 +
∆A, B = B0 + ∆B , where [∆A,∆B ] ∈ Ξ∆ ,

CO{[∆
(1)
A ,∆

(1)
B ], · · · , [∆

(I)
A ,∆

(I)
B ]}.

A0 and B0 are certain known matrices which can be

called as the nominal model. The uncertainties ∆A and

∆B can be represented by a convex set of L vertices

{[∆
(1)
A ,∆

(1)
B ], ..., [∆

(I)
A ,∆

(I)
B ]}. We define [A(i), B(i)] , [A0+

∆
(i)
A , B0 + ∆

(i)
B ], i ∈ N[1,I], then the model [A,B] is in the

collection of Ξ, i.e.,

[A,B] ∈ Ξ , C0{[A
(1), B(1)], · · · , [A(I), B(I)]}. (3)

Assuming the state of system (1) is completely measurable,

the aim of this paper is to develop a data-driven MPC

controller that integrates an online data selection method. This

method is pivotal for the identification of informative data,

thereby significantly improving the controller’s performance

and ensuring the effective implementation of the MPC strategy.

At time k, given the data items at past M moments

generated by the unknown system
M∑
p=1

x(k − p),
M∑
p=1

u(k − p)

and the current state x(k). Define the matrices that collect

these data

X−
k := [x(k − 1), x(k − 2), · · · , x(k −M)], (4)

U−
k := [u(k − 1), u(k − 2), · · · , u(k −M)], (5)

X+
k := [x(k), x(k − 1), · · · , x(k −M + 1)]. (6)

Given that the current state and input satisfies {x(k), u(k)} =

{
M∑
p=1

βpx(k−p),
M∑
p=1

βpu(k−p)}, then the next step perdicted

state x(1|k) =
M∑
p=1

βp(x(k − p+ 1)− d(k − p)) + d(k).

III. INPUT-MAPPING MPC WITH A DATA SELECTION

METHOD

In this section, we propose an input-mapping based data-

driven MPC strategy with a data selection method, aimed at

improving the control performance of system (1).

A. Input-mapping MPC

Input-mapping methods utilize historical states and inputs

to represent current and future multi-step control states and

inputs. As analyzed above, the future state x(τ |k) can be

composed of the past state information γ(τ |k) and state residual

δ(τ |k),

x(τ |k) = γ(τ |k) + δ(τ |k) + w(τ |k), (7)

The linear combination of historical states γ(τ |k) ∈ R
nx :

γ(τ |k) =

M−p∑

p=1

(l(τ |k))px(k − p), τ ∈ N[0,NP−1], (8)

Similarly, the future input u(τ |k) consists of the past input

information υ(τ |k) and input residual σ(τ |k). In addition, we

use the dual-mode MPC strategy [16].

u(τ |k) =

{
υ(τ |k) + σ(τ |k), τ ∈ N[0,NP−1],

Kx(τ |k), τ ∈ NP≥N ,
(9)

where the stabilizing feedback gain K enables the closed-

loop system matrix φ(j) = A(j) + B(j)K to satisfy the

Schur stability. The linear combination of historical inputs

υ(τ |k) ∈ R
nu can be represented as:

υ(τ |k) =

M−p∑

p=1

(l(τ |k))pu(k − p), τ ∈ N[0,NP−1], (10)

where the linear combination coefficient l(τ |k) ∈ R
NP−τ is the

online optimization variable. The input residual σ(τ |k) ∈ R
nu

can be represented as

σ(τ |k) = K(δ(τ |k) + w(τ |k)) + ̺(τ |k), τ ∈ N≥0, (11)

where ̺(τ |k) is the online optimization variable.

On the basis of equation (9) and (7), the predicted state can

be represented as

x(τ+1|k) = γ(τ+1|k) +H(τ |k) + (A+BK)δ(τ |k)

+Bσ(τ |k) + w(τ+1|k),
(12)



where w
(τ+1|k)

= −
∑M−τ

p=1 [l(τ |k)]pd(k − τ) + (A +
BK)w(τ |k) + d(τ |k).

The state residual δ(τ |k) ∈ R
nx can be represented as

δ(τ |k) = H(τ−1|k) + (A+BK)σ(τ−1|k)

+Bc(τ−1|k), τ ∈ N≥1,
(13)

where τ(0|k) = x(0|k) − γ(0|k). H(τ−1|k) is defined as

H(τ−1|k)

,

M−τ+1∑

p=2

[(
l(τ−1|k)

)
p
−

(
l(τ |k)

)
p−1

]
x(k − p+ 1)

+
(
l(τ−1|k)

)
1
x(k), τ ∈ N[1,NP−1],

(14)

H
(NP −1|k)

,

M−NP+1∑

p=1

(
l
(NP −1|k)

)

p
x(k − p+ 1),

H(τ |k) = 0, τ ∈ N≥N .

(15)

The input-mapping data-driven robust MPC aims to calcu-

late control inputs by solving linearly constrained quadratic

programming problems at each moment. Some symbols are

introduced here to define the objective function,

l(τ |k) = col
[
l(τ |k), l(τ+1|k), · · · , l(τ +NP − 1|k)

]
,

γ
(τ |k)

= col
[
γ(τ |k), γ(τ+1|k), · · · , γ(τ +NP − 1|k)

]
,

υ(τ |k) = col
[
υ(τ |k), υ(τ+1|k), · · · , υ(τ +NP − 1|k)

]
,

σ(τ |k) = col
[
σ(τ |k), σ(τ+1|k), · · · , σ(τ +NP − 1|k)

]
,

H(τ |k) = col
[
H(τ |k), H(τ+1|k), · · · , H(τ +NP − 1|k)

]
,

θ(τ |k) = col
[
γ
(τ |k)

, υ(τ |k), δ(τ |k), σ(τ |k), H(τ |k)

]
.

The matrices Vnx
∈ R

nx×Nnx , Vnu
∈ R

nu×Nnu are

introduced as follows:

Vnx
=

[
Inx

0 · · · 0
]
,

Vnu
=

[
Inu

0 · · · 0
]
.

From these definitions, we can derive the relationships

that γ(τ |k) = Vnx
γ
(τ |k)

, υ(τ |k) = Vnu
υ(τ |k), σ(τ |k) =

Vnu
σ(τ |k), H(τ |k) = Vnx

h(τ |k). Furthermore, we introduce the

transfer matrices Wnx
∈ R

Nnx×Nnx ,Wnu
∈ R

Nnu×Nnu as

follows:

[Wnx
]τ,k =

{
In, k = τ + 1,

0, k 6= τ + 1,

[Wnu
]τ,k =

{
Im, k = τ + 1,

0, k 6= τ + 1.

Similarly, we can derive the relationships that

γ(τ+1|k) = Vnx
γ
(τ |k)

, υ(τ+1|k) = Vnu
υ(τ |k), σ(τ+1|k) =

Vnu
σ(τ |k), H(τ+1|k) = Vnx

H(τ |k). The optimization problem

in the input-mapping data-driven robust MPC algorithm is

described in detail as follows

min
{σ(τ|k),l(τ|k)}τ∈N[0,NP −1]

λ(k)TN(k)λ(k)

s.t. Fx(k) +Gu(k) ≤ 1.
(16)

N(k) is a positive definite matrix that can be represented

N(k) = D(k)TPD(k), where D(k) satisfies λ(k) =
D(k)θ(0|k) and P satisfies P ≥ (ζ(j))TPζ(j) + Q̄, ∀j ∈
N[1,L]. ζ(j) and Q̄ can be further represented as ζ(j) =

diag(Wnx
,Wnu

, ζ̃(j)), Q̄ = ET
Q diag(Q,R)EQ, where

ζ̃(j), EQ are defined as follows:

ζ̃(j) =




φ(j) B(j) 0 Vnx
0

0 Wnu
0 0

0 0 0 Wnx


 ,

EQ =

[
Vnx

0 Inx
0 0

0 Vnu
K Vnu

0

]
.

λ(k) is defined as

λ(k) = col[l(0|k), 1, σ(0|k)]. (17)

B. Data selection strategy

This subsection proposes a data selection method to sort

out data items in data-driven MPC. Due to the presence of

disturbances within the system, the data near the origin does

not accurately reflect the system’s dynamic characteristics. To

address this, we have established a threshold value for the

state, denoted as δx, below which data points will be excluded

from the data set. In addition, based on the method checking

the similarity index [9], this method adds a controller perfor-

mance evaluation benchmark and sliding window technology.

A linear quadratic Gaussian benchmark is proposed in [12]

to assess controller performance. Nonetheless, its applicability

may be limited in systems with no constraints. To assess the

controller performance, we consider the ratio of the change in

the loss function from one moment to the next. Specifically,

the performance metric is defined by the quotient of the loss

function’s differences between the current and preceding in-

stances. Define n(τ |k) = ‖x(τ |k)‖
2
Q+‖u(τ |k)‖

2
R. The controller

performance at the previous time k − 1 and the current time

k can be represented as follows, respectively:

J∞(k − 1) =

∞∑

τ=0

(n(τ |k−1), J∞(k) =

∞∑

τ=0

(n(τ |k)). (18)

Thus, define the data-driven controller performance bench-

mark as

ηk =
J∞(k − 1)− J∞(k)

n(0|k−1)

=
n(0|k−1) − n(0|k)

n(0|k−1)
.

(19)

This benchmark delineates the rate of reduction in the loss

function subsequent to the introduction of a control input at

time k. An elevated benchmark value is indicative of a more

rapid descent of the loss function, which in turn, correlates

with an enhanced controller performance.

The controller performance benchmark operates by compar-

ing current data solely against a dataset of preceding historical

data, thereby determining the retention or exclusion of the

data. Nonetheless, such an approach risks neglecting signifi-

cant patterns or emerging trends. To address this limitation,



we introduce a sliding window methodology. This technique

is particularly effective in discerning the most exemplary data

points within a designated timeframe, thereby averting the

gradual loss of data integrity. The sliding window’s scope is

characterized by its length, represented as NS . The historical

data repository is bifurcated into two segments: one segment

is a static component of historical data, while the other is a

dynamic component that is periodically refreshed in tandem

with the sliding window’s progression.

To elucidate our method more clearly, Figure 1 presents a

schematic diagram showing the logical flow and interactions of

each step. NT represents the length of the static component of

the data. The comprehensive algorithm of the proposed method

is encapsulated in Algorithm 1.

Input-mapping 

MPC

Uncertain 

System 

Online Data 

Data Selection Strategy

inputs

outputsreference

disturbance

{ !,  ", # ,  $ }%&'()*:

%&'()* + 1:

{ !,  ", ,  $ }

{ !,  ", # ,  $-! }

Selecting)./ data 

with the top 

performance 

metrics within 

the sliding 

window.

 !023-!, 023-", # , 024}

{526 , 527 , # ,523, 523-!, 523-", # ,524}

0

{

{026 , 027 , # ,023,

 8: controller performance at time & 
 !

Fig. 1. The diagram of input-mapping MPC strategy with data selection
method.

Theorem 3.1: (Recursive feasibility and stability) When

system (1) satisfies Assumption 2.1, Algorithm 1 has recursive

feasibility and closed-loop stability.

Proof: Assume problem (16) can be solved at k. Define the

optimal solution sequence σ∗
(0|k) = {σ∗

(0|k), · · · ,
σ∗
(NP−1|k)}, l∗(0|k) = {l∗(0|k), · · · , l

∗
(NP−1|k)}. Thus the op-

timal historical state and input linear combination vari-

ables as γ∗(k) = {γ∗
(0|k), · · · , γ

∗
(NP−1|k)}, υ∗(k) =

{υ∗
(0|k), · · · , υ

∗
(NP −1|k)

}, the optimal auxiliary variables is

H∗(k) = {H∗
(0|k), · · · , H

∗
(NP −1|k)

}. Define the optimal state

residual set δ∗(τ |k) and input residual set σ∗
(τ |k)

δ∗(τ |k) ∈ ∆∗
(τ |k) = Co{δ

(̃i1:τ )∗
(τ |k) , ĩ1:τ ∈ Lτ}

σ∗
(τ |k) ∈ Σ∗

(τ |k) = Co{σ
(̃i1:τ )∗
(τ |k) , ĩ1:τ ∈ Lτ}

By using the optimal solution at time k, the solution sequence

and linear combination coefficient for time k + 1 can be

constructed as:

σ̂(k + 1) ={σ∗
(1|k)

, σ∗
(2|k), · · · , σ

∗
(NP −1|k)

,0},

l̂(k + 1) ={l∗(0|k+1), l
∗
(1|k+1), · · · , l

∗
(NP−2|k+1),0},

(20)

Algorithm 1: Input-mapping MPC strategy with data

selection method.

Input: Select a robust and stabilizing feedback gain

K, identify a robust positive invariant set Ω,

specify the length of historical data NL, and

define the sliding window duration Ns;

for k = 1, 2, . . . do
Solve the optimization problems (16) and apply the

control inputs (11) to the system;

Obtain the system state x(k + 1) and calculate the

performance metric ηk for the current time step k

(19);

Store the current control performance metric value

ηk at the present instant k;

if ‖x‖2 exceeds δx then

if k <= NS then
Identify the top NT data points based on

the highest ηk values;

Fix NT data in the data sets X−
k ,U−

k ,X+
k ;

else
Determine the most optimal NL −NT data

points exhibiting the highest ηk values;

Replace the dynamic elements with the

selected data points;

end

end

Set k := k + 1;

end

According to (10), (12) and (13), it can be obtained:

γ̂(τ |k+1) = γ∗
(τ+1|k), τ ∈ N[0,NP−1],

γ̂(τ |k+1) = 0, τ ∈ N≥NP
,

υ̂(τ |k+1) = υ∗
(τ+1|k), τ ∈ N[0,NP−1],

υ̂(τ |k+1) = 0, τ ∈ N≥NP
,

Ĥ(τ |k+1) = H∗
(τ+1|k), τ ∈ N[0,NP−1],

Ĥ(τ |k+1) = 0, τ ∈ N≥NP
.

(21)

The state residual set ∆̂(τ |k+1) and the optimal state set

Σ̂(τ |k+1) can be constructed as:

∆̂(τ |k+1) = Co{δ̂ĩ1:τ(τ |k+1), ĩ1:τ ∈ Lτ}, (22)

Σ̂(τ |k+1) = Co{σ̂ĩ1:τ
(τ |k+1), ĩ1:τ ∈ Lτ}. (23)

constructing the vertices as follows:

δ̂(0|k+1) =
I∑

i=1

h(i)(δ
(i)∗
(1|k) + w

(i)∗
(1|k)),

δ̂ĩ1:τ(τ |k+1) =

L∑

i=1

h(i)δ
(i,̃i1:τ )∗
(τ+1|k) + φ(iτ ) · · ·φ(i1)w∗

(1|k), τ ∈ N[1,NP−1],

δ̂
(̃i1:NP −1,iN )

(NP |k+1) = φ(iN )δ̂
ĩ1:NP −1

(NP−1|k+1).



Similarly, define the optimal state x∗
(τ |k) and input set u∗

(τ |k)

at time k as

x∗
(τ |k) ∈ X ∗

(τ |k) = Co{x
(̃i1:τ )∗
(τ |k) , ĩ1:τ ∈ Lτ}

u∗
(τ |k) ∈ U∗

(τ |k) = Co{u
(̃i1:τ )∗
(τ |k) , ĩ1:τ ∈ Lτ}

By using the optimal solution at time k, the state set X̂(τ |k+1)

and input set Û(τ |k+1) at time k + 1 can be constructed as:

X̂(τ |k+1) = Co{x̂ĩ1:τ
(τ |k+1), ĩ1:τ ∈ Lτ}, (24)

Û(τ |k+1) = Co{ûĩ1:τ
(τ |k+1), ĩ1:τ ∈ Lτ}, (25)

constructing the vertices as follows:

x̂(0|k+1) =
I∑

i=1

h(i)x
(i)∗
(1|k) + w

(i)∗
(1|k),

x̂ĩ1:τ
(τ |k+1) =

L∑

i=1

h(i)x
(i,̃i1:τ )∗
(τ+1|k) + φ(iτ ) · · ·φ(i1)w∗

(1|k),

τ ∈ N[1,NP−1],

x̂
(̃i1:NP −1,iNP

)

(NP |k+1) = φiN x̂
ĩ1:NP −1

(NP−1|k+1),

û(0|k+1) =

I∑

i=1

h(i)u
(i)∗
(1|k) +Kw

(i)∗
(1|k),

ûĩ1:τ
(τ |k+1) =

L∑

i=1

h(i)u
(i,̃i1:τ )∗
(τ+1|k) + φ(iτ ) · · ·φ(i1)w∗

(1|k),

τ ∈ N[1,NP−2],

û
ĩ1:NP −1

(NP−1|k+1) =Kx̂
ĩ1:NP −1

(NP−1|k+1).

Thus, the vertices constructed above satisfy the constraints

at time k+1. Therefore, the constructed solution σ̂(k+1), l̂(k+
1) can be solved at time k + 1.

The stability of the Algorithm 1 is declared now. Define

the optimal objective function at time k as V (λ∗(k)) ,

(λ∗(k))TN(k)λ∗(k) and at time k + 1 as V (λ̂(k + 1)) ,

(λ̂(k+1))TN(k+1)λ̂(k+1). At time k, the optimal augmented

vector is defined as θ∗(τ |k) and is given by the following

expression:

θ∗(τ |k) = col[γ∗
(τ |k)

, υ∗
(τ |k), δ

∗
(τ |k),

σ∗
(τ |k), H

∗
(τ |k)],

(26)

The augmented vector at time k + 1 is defined as θ̂(τ |k+1).

θ̂(τ |k+1) = col[γ̂
(τ |k+1)

, υ̂(τ |k+1), δ̂(τ |k+1), (27)

σ̂(τ |k+1), Ĥ(τ |k + 1)]. (28)

Given that λ∗
(0|k) = D(k)(θ∗(0|k)) and λ̂(0|k+1) = D(k +

1)θ̂(0|k+1) are valid, hence the optimal objective function at

time k and time k + 1 is defined as:

V (λ∗
(0|k)) = (θ∗(0|k))

TPθ∗(0|k),

V (λ̂(0|k+1)) = (θ̂(0|k+1))
TP θ̂(0|k+1).

(29)

It can be obtained that θ(0|k+1) = θ∗(1|k) = ζθ∗(0|k) + d∗(1|k),

hence

V (λ∗
(0|k))− V (λ̂(0|k+1))

≥
∥∥x(0|k)

∥∥2
Q
+

∥∥u(0|k)

∥∥2
R
− nd̄.

(30)

where n > 0, d̄ = maxd∈D ‖d‖2. The system is asymptotically

stable. �

IV. SIMULATION

In this section, a simulation example is given to verify

the efficacy of the data selection method. The data selec-

tion method using controller performance benchmark can be

applied in input-mapping data-driven MPC with uncertain

models. For brevity, it is named input-mapping data selection

with controller performance method(IM-DS-CPM). Consider

that the parameters of the uncertain system (1) are as follows:

A0 =




0.8623 0 0.1472 0
0 0.8359 0 0.1052
0 0 0.6434 0
0 0 0 0.8130


 ,

B0 =




0.0647 0
0 0.0647
0 0.0680

0.0619 0


 ,

∆
(1)
A =




0 0 −0.1177 0
0 0 0 0
0 0 0.3163 0
0 0 0 0


 ,∆

(1)
B =




0 0
0 0
0 −0.0204
0 0


 ,

∆
(2)
A =−∆

(1)
A , ∆

(2)
B = −∆

(1)
A .

The disturbance ‖d‖∞ ≤ 0.01, state constraints are ‖x‖∞ ≤
15, input constraints are ‖u‖∞ ≤ 15.

Set the length of historical data M as 6 and the length of

the sliding window NS as 7. Select an optimal time domain

length NP as 4. The threshold value δx is set as 1. The initial

state is set as x0 = [9, 11, 7.5, 8]T , and at the time 70, the

system state is reset to its initial condition. The error weight

matrix Q is diag{2, 0.1, 6, 0.1} and the input weight matrix

R is 0.01I2. IM-DS-CPM is compared with the method in

[7], which can be shorted as input-mapping MPC (IM), and

the method in [9], which used a similarity index to check the

similarity between the current data and the past data items.

For brevity, the method [9] is named as input-mapping data

selection with similarity(IM-DS-SIM).

The results can be seen in Fig.2-5. Upon examination of

Fig.4, where the state x3 is assigned the greatest weight, it

is evident that the data selection can accelerate the system.

Consequently, the data-driven selection strategy we have pro-

posed is adept at identifying the most informative data and

improving the performance of the controller.

V. CONCLUSION

This paper proposes a new data selection strategy for data-

driven MPC with uncertain models. The input-mapping MPC

approach uses historical data to linearly represent the system’s
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Fig. 2. The trajectories of state x1(k).
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Fig. 3. The trajectories of state x2(k).
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Fig. 4. The trajectories of state x3(k).
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Fig. 5. The trajectories of state x4(k).

current and future states and control inputs. To enhance

controller performance, a data-driven framework is introduced

to evaluate the controller’s effectiveness. Key to this method

is a sliding window mechanism, which identifies data points

that most improve performance. The optimal combination

coefficients of historical data are derived through solving an

optimization problem. The stability of the resulting closed-

loop system is analyzed. The proposed method’s validity is

demonstrated through an example for an uncertain system.
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model update,” Automatica, vol. 103, pp. 461–471, 2019.

[6] S. He, Y. Xu, Y. Guan, D. Li, and Y. Xi, “Synthetic robust model
predictive control with input mapping for constrained visual servoing,”
IEEE Transactions on Industrial Electronics, vol. 70, no. 9, pp. 9270–
9280, 2022.

[7] L. Yang, A. Ma, D. Li, and Y. Xi, “Input-mapping based data-driven
model predictive control for unknown linear systems with bounded
disturbances,” Automatica, vol. 153, p. 111056, 2023.

[8] Y. Zhou, K. Gao, X. Tang, H. Hu, D. Li, and F. Gao, “Conic input
mapping design of constrained optimal iterative learning controller for
uncertain systems,” IEEE Transactions on Cybernetics, vol. 53, no. 3,
pp. 1843–1855, 2022.

[9] L. Yang and D. Li, “Data selection strategy in data-driven model
predictive control of uncertain systems,” in Proceedings of the 34th

China Process Control Conference, p. 285, 2023.
[10] D. R. Gurusinghe and A. D. Rajapakse, “Post-disturbance transient

stability status prediction using synchrophasor measurements,” IEEE

Transactions on Power systems, vol. 31, no. 5, pp. 3656–3664, 2015.
[11] X. Wang, B. Huang, and T. Chen, “Multirate minimum variance control

design and control performance assessment: A data-driven subspace
approach,” IEEE Transactions on Control Systems Technology, vol. 15,
no. 1, pp. 65–74, 2006.

[12] N. D. Pour, B. Huang, and S. L. Shah, “Performance assessment of
advanced supervisory–regulatory control systems with subspace LQG
benchmark,” Automatica, vol. 46, no. 8, pp. 1363–1368, 2010.

[13] K. Ando, S. Masuda, and M. Kano, “Data-driven generalized minimum
variance regulatory control,” in Proceedings of 2014 European Control

Conference, pp. 418–423, IEEE, 2014.
[14] J. Yu and S. J. Qin, “Statistical mimo controller performance monitoring.

part i: Data-driven covariance benchmark,” Journal of Process Control,
vol. 18, no. 3-4, pp. 277–296, 2008.

[15] L. Zhang, J. Lin, and R. Karim, “Sliding window-based fault detection
from high-dimensional data streams,” IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 47, no. 2, pp. 289–303, 2016.
[16] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Con-

strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, 2000.


