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Abstract—Data quality is pivotal for the performance of data-
driven model predictive control systems. While traditional data
processing methods, such as cleaning and enrichment, are neces-
sary, they do not always improve the controller performance. To
tackle this problem, this paper introduces a new data selection
method specifically designed for data-driven model predictive
control. It includes a controller performance evaluation approach
that assesses the quality of the current data, enabling the
controller to select a set of informative data elements that enhance
its performance. Additionally, a sliding window mechanism is
implemented to compare current data against historical data,
preventing the loss of significant patterns or trends. A simulation
example illustrates the effectiveness of the proposed data selection
method.

Keywords—Data selection, controller performance evaluation,
data-driven, model predictive control.

I. INTRODUCTION

Model predictive control(MPC) is one of the most preva-
lent advanced control strategies employed in today’s process
industry, such as robotics [1], crude distillation [2] and auto-
motive driving [3]. It obtains better control performance while
satisfying the system constraints.

Traditional MPC provides stability against minor model
mismatch and disturbance. Yet, as these mismatches or dis-
turbances grow, the closed-loop system can become unstable,
potentially leading to divergence of the state. To tackle the
difficulty of managing systems with constraints under uncer-
tain model parameters, the concept of robust MPC has been
introduced [4]. This approach, while enhancing robustness,
often introduces a level of conservatism that affects the control
performance [5].

To address the conservatism inherent in robust MPC, re-
searchers have incorporated data into the model update pro-
cess or controller design. Historical data, rich with dynamic
information about unknown models, can be harnessed to
estimate models for systems with undisclosed parameters. This
adaptive MPC technique has been extensively implemented
in industrial settings, yielding positive feedback in terms of
control effectiveness [3]. However, the online identification
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process does require a significant allocation of computational
resources.

Another type of method bypasses model identification, using
data to design the MPC controller directly. It is simple and
effective. Data-driven MPC strategies are categorized as offline
or online, depending on the data source. In industrial systems,
the dynamic operating points of the equipment may not be
completely represented by offline data. In contrast, online
data refreshment enables the system to adapt to the system’s
changing dynamics in real time, which is why online data-
driven MPC is increasingly favored [6].

An online data-driven input-mapping method is proposed
in [7], which uses a linear combination of historical input data
and an additional free input to determine the current control
input. In [8], a data selection strategy is proposed, aimed at
filtering linearly independent data vectors to minimize the data
required to predict the system’s future trajectory. Meanwhile,
[9] presents a similarity index for assessing the resemblance
between current and previously stored past data. Despite these
advancements, the controller’s performance was not factored
into the data selection process. Nevertheless, the performance
of data-driven MPC is greatly influenced by the quality of the
prior knowledge database as well as its quantity[10].

At present, there are many research results on controller
performance evaluation, such as minimum variance control
benchmark [11], linear quadratic Gaussian benchmark [12],
and generalized minimum variance control law [13]. However,
these methods all depend on predefined models. In [14], a
period of reference data from the process with satisfactory con-
trol performance is used as a benchmark. The key limitation
of this method, however, is that it relies on prior knowledge
for selecting the reference data. As far as we are aware, there
is currently no research that integrates online data-driven data
selection with controller performance evaluation.

In this paper, we design a data selection method for uncer-
tain systems within the data-driven MPC strategy, which does
not rely on certain models. We utilize process data to evaluate
data quality, employing the ratio of differences between the
current and previous loss functions to assess whether the



current data enhances controller performance. The approach
from [9] focuses solely on comparing current data to historical
data, which may lead to the omission of significant data and
the loss of critical patterns or trends. To address this, we
incorporate a sliding window strategy, commonly employed in
data stream mining [15]. By implementing this, we maintain
a collection of high-quality data items over a period, ensuring
that optimal data sets are identified and that valuable data is
not systematically excluded.

The rest of this paper is organized as follows. The problem
formulation is presented in Section 2. In Section 3, a novel data
selection method for the data-driven MPC strategy is proposed.
Section 4 provides an example to demonstrate the efficacy of
the methods proposed in this paper. Finally, Section 5 presents
key conclusions drawn from the study.

Notation: Let R, R™, and N denote the field of real numbers,
n-dimensional real space, and the set of non-negative integers,
respectively. Let Ni, 5 = {a,a +1,--- b}, for a,b € N. Let
N>, ={a,a+1,---}, for a € N. Co{-} denotes the convex
hull. Given a symmetric matrix P, P > 0 means that the ma-
trix P is positive definite. For a column vector x and a matrix
2, = 2T Px. For col-
vxn] = [.’[7{, T xT]T'

rn

umn vectors xy,- - , &y, col[zy,---
|- ||2 denotes 2-norm.

II. PROBLEM FORMULATION

Consider the discrete-time uncertain system as follows

z(k+1) = Ax(k) + Bu(k) + d(k), (D)

and the system constraints satisfy
Fz(k) + Gu(k) <1, (2)
where z(k) € R™, u(k) € R™, and d(k) € R™ represent

the state, the control input, and the disturbance, respectively. A
and B are both unknown matrices, which satisfy the following
assumption.

Assumption 2.1: The system matrices satisfy A = Ay +
Ay, B = By + Ap, where [AA,AB] € Za £
Coflay, AR, (AL, AF]).

Ag and Bg are certain known matrices which can be
called as the nominal model. The uncertainties A4 and
Ap can be represented by a convex set of L vertices
{[A;”,Ag)] (A AL We define [AD, BOT 2[4+
A ,Bo + A ] i € Ny 1), then the model [A, B] is in the
collectlon of &, i.e.,

[A,B] €= A CO{[A“),B(”], ... 7[14(1)73(1)}}. (3)

Assuming the state of system (1) is completely measurable,
the aim of this paper is to develop a data-driven MPC
controller that integrates an online data selection method. This
method is pivotal for the identification of informative data,
thereby significantly improving the controller’s performance
and ensuring the effective implementation of the MPC strategy.

At time k, given the data 1tems at past M moments

M
generated by the unknown system Z x(k—=p),> ulk—p)
p=1 p=1

and the current state x(k). Define the matrices that collect
these data

X, =[z(k-1),2(k—-2),--- ,x(k — M)], 4)
U, = [u(k—1),u(k—2), - ,u(k — M)], ®)
X o= [w(k),z(k—1), - 2k — M +1)]. (6)
Given that the current state and input satisfies {z(k), u(k)} =

{ % Bpx(k—p), % Bpu(k—p)}, then the next step perdicted
p=1
Z Ppla(k —p+1) -

II1. INPUT-MAPPING MPC WITH A DATA SELECTION
METHOD

state 2(|k) = d(k —p)) +d(k).

In this section, we propose an input-mapping based data-
driven MPC strategy with a data selection method, aimed at
improving the control performance of system (1).

A. Input-mapping MPC
Input-mapping methods utilize historical states and inputs
to represent current and future multi-step control states and

inputs. As analyzed above, the future state z(;y) can be
composed of the past state information (1) and state residual

O(r|k)»

T(rlk) = V(rlk) T Orlk) + Wik, ™
The linear combination of historical states (i) € R™=:
M-—p
Yoty = Y (irpy)p(k = ), 7 € Ngvpmrpy (8)
p=1

Similarly, the future input u(, gy consists of the past input
information v,y and input residual o(,z). In addition, we
use the dual-mode MPC strategy [16].

U(rlk) + O(r|k)>
U(r|k) =
(rlk) {mek),

TE N[O,Np—l]v (9)
T E NPZ N

where the stabilizing feedback gain K enables the closed-
loop system matrix ¢U) = AU 4+ BUIK to satisfy the
Schur stability. The linear combination of historical inputs
U(r|k) € R™ can be represented as:

M-—p

Z (lrik))pu(k = p), ™ € Njo,np 1]
p=1

V(r|k) = (10
where the linear combination coefficient /(- 3) € RNP=T s the
online optimization variable. The input residual o) € R™
can be represented as

(k) = K(O(r|k) + Wiriky) + (k) T € N0, (11)

where g(;|x) is the online optimization variable.

On the basis of equation (9) and (7), the predicted state can
be represented as

T(rt1ik) = Vr+1ik) + Hirpey + (A+ BK)d(r )

(12)
+ Bo(rk) + W(rs1ik),



M—1
where Wty —  — Zp:l [l(‘f|k)]10d(k - T) + (A +
BE)wr k) + dirip-
The state residual d(- ) € R™= can be represented as

Oriey = Hir—1y + (A + BE)o (1)

(13)
+ BC(T_l‘k),T € N>q,
where T(0|k) = T(0lk) — Y(0|k)- H(7-71|k) is defined as
Hiz—1j
M—7+1
&N [Ue-am), = (ew), ] 2k —p+1) 14y
p=2
+ (lr—1j1)), 2(K), 7 € Njt vp—1),
M—-Np+1
H. 2 (z ) ) a(k —p+1),
(Np—1k) I; (Np—1lk) » (15)

H(T|k) =0,7 € N>n.

The input-mapping data-driven robust MPC aims to calcu-
late control inputs by solving linearly constrained quadratic
programming problems at each moment. Some symbols are
introduced here to define the objective function,

Liriky = €Ol [z k) lirgjiys -+ > UT + Np = 1K) ],
Virpy = €01 Yrtky> Yr+1k)s - ¥ (T + Np — 1]k)
: )

Uiriy = €O [U(r k), V(rtaipys - 0(T + Np — 1]k

sy = €OL [0 (2 k) O(r 1), -+ >0 (T + Np = 1[k)]
H () = col [Hiripy, Hiriajgy, -+ H(T + Np = 1]k)] ,
O(rlk) = col {Z(T\k)&(r\k)’5<ﬂk)’g(r|k>vﬂ<r|k>} :

The matrices V,,, € ]R”wXN"w,Vnu c RwXNnu gre
introduced as follows:

Voo = In, 0 0],

Vnu:[Inu 0o - O}.
From these definitions, we can derive the relationships
that (r(x) VieD iy Valt) = Vaulrinys Orlky =

Vo @iy Hirky = Vi, Iy 1) - Furthermore, we introduce the
transfer matrices W,,, € RN">XNne 17— ¢ RNnuXNnu g
follows:

I, k=717+1,
[an]r,k =

0, k#71+1,

I, k=741,
[Wn“]‘r,k =

0, k#71+1.

that
Vrsllk) = Vnzl(le)7U(7+1|k) = Vo, Uiy O(rt1jk) =
Vo @(rikys Hir+11k) = Vi, H (7). The optimization problem
in the input-mapping data-driven robust MPC algorithm is
described in detail as follows

Similarly, we can derive the relationships

ME)TN(E)M(E)

min
{oeimlerimtreng npoy

st. Fz(k)+ Gu(k) < 1.

(16)

N(k) is a positive definite matrix that can be represented
N(k) = D(k)TPD(k), where D(k) satisfies \(k) =
D(k)fopy and P satisfies P > (¢U)TPCU) 4+ Q,Vj €
Ny, ) ¢U) and Q can be further represented as () =
diag(Wi,, Wy, (), @ = E}diag(Q,R)Eqg, where
CY)| Eq are defined as follows:

o9 BU 0 V, 0
=1 o0 W, 0o 0|,

0 0 0 W,

Voo 0 I, 0 0
Eq 0 V,, Vo, O

A(k) is defined as

A(k) = colllioiry, 1, o (ojr))- (17)

B. Data selection strategy

This subsection proposes a data selection method to sort
out data items in data-driven MPC. Due to the presence of
disturbances within the system, the data near the origin does
not accurately reflect the system’s dynamic characteristics. To
address this, we have established a threshold value for the
state, denoted as §,, below which data points will be excluded
from the data set. In addition, based on the method checking
the similarity index [9], this method adds a controller perfor-
mance evaluation benchmark and sliding window technology.

A linear quadratic Gaussian benchmark is proposed in [12]
to assess controller performance. Nonetheless, its applicability
may be limited in systems with no constraints. To assess the
controller performance, we consider the ratio of the change in
the loss function from one moment to the next. Specifically,
the performance metric is defined by the quotient of the loss
function’s differences between the current and preceding in-
stances. Define n(7 (k) = || (+(x) |15 + | t(r k) | - The controller
performance at the previous time k — 1 and the current time
k can be represented as follows, respectively:

Too(k=1) = (nirip—1), Joo (k) = D (nrry)-  (18)
7=0 7=0

Thus, define the data-driven controller performance bench-
mark as

T(0]k—1)
_ Pojk=1) = (oK)

N =
(19)

n(0lk-1)
This benchmark delineates the rate of reduction in the loss
function subsequent to the introduction of a control input at
time k. An elevated benchmark value is indicative of a more
rapid descent of the loss function, which in turn, correlates
with an enhanced controller performance.

The controller performance benchmark operates by compar-
ing current data solely against a dataset of preceding historical
data, thereby determining the retention or exclusion of the
data. Nonetheless, such an approach risks neglecting signifi-
cant patterns or emerging trends. To address this limitation,



we introduce a sliding window methodology. This technique
is particularly effective in discerning the most exemplary data
points within a designated timeframe, thereby averting the
gradual loss of data integrity. The sliding window’s scope is
characterized by its length, represented as Ng. The historical
data repository is bifurcated into two segments: one segment
is a static component of historical data, while the other is a
dynamic component that is periodically refreshed in tandem
with the sliding window’s progression.

To elucidate our method more clearly, Figure 1 presents a
schematic diagram showing the logical flow and interactions of
each step. Ny represents the length of the static component of
the data. The comprehensive algorithm of the proposed method
is encapsulated in Algorithm 1.

Data Selection Strategy

Selecting ny data o N N
Sliding Window Mechanism

with the top
{tn,o Unyy = Ung Ungass Ungazs o Uny} performance Time k: {'71-["[2
{Xnys Xnys - Xngs Xnp+1 Xngt2s " Xny} r:etr:cds within Time k + 1: {mln’z 5
N . the sliding
Static Part Dynamic part window. 7;: controller performance at ti 15
Online Data
f v
reference - |nput-mapping [ Uncertain outputs
MPC inputs System
)

disturbance

Fig. 1.
method.

The diagram of input-mapping MPC strategy with data selection

Theorem 3.1: (Recursive feasibility and stability) When
system (1) satisfies Assumption 2.1, Algorithm 1 has recursive
feasibility and closed-loop stability.

Proof: Assume problem (16) can be solved at k. Define the
0pt1mal solution sequence a(o‘k = {U(0|k:)7 BN

Tinp—1iky e Loy = {l(ouf)v"' {np—1jpy)- Thus the op-
timal historical state and 1nput linear combination vari-
ables as 7' (k) = (o oV e} vt (K) =
{UZ‘O k),-~-, v 1‘k)}, the optimal auxiliary variables is
H*(k) = {H 0|k)"" jH(*NP—l\.k)}. Define the optimal state
residual set 5 (rlk) and input residual set O'Ek_rl k)

5trity € Alspy = Cololr)" inr € £}

(el € Eirik) = CO{"(rwc) e € Lo}

By using the optimal solution at time k, the solution sequence
and linear combination coefficient for time k£ + 1 can be
constructed as:

Q»

(k+1) ={00, 1 Oappy
I(k+1)

aU(prl‘k)aO}a (20)

={I" 0pk+1)> " (k1) > U (Np—2/k+1)5 O},

Algorithm 1: Input-mapping MPC strategy with data
selection method.

Input: Select a robust and stabilizing feedback gain
K, identify a robust positive invariant set €2,
specify the length of historical data Nz, and
define the sliding window duration Ng;

for k=1,2,... do

Solve the optimization problems (16) and apply the
control inputs (11) to the system;

Obtain the system state (k + 1) and calculate the
performance metric 7y for the current time step k
(19);

Store the current control performance metric value
7 at the present instant k;

if ||x||2 exceeds §, then

if K <= Ng then

Identify the top N data points based on
the highest 7 values;

Fix N7 data in the data sets X,;,U,;,X,j;

else

Determine the most optimal N;, — Np data

points exhibiting the highest 7, values;
Replace the dynamic elements with the
selected data points;

end

end
Set k:=k+1;

end

According to (10), (12) and (13), it can be obtained:

Yerlk+1) = Vr41%) T € No,Np—1),
Yrlk+1) = 0,7 € N>np,

O(rb+1) = Yirt1k)s T € Njo,np—1], on
O(rik+1) = 0,7 € N>y,

Hirikr1) = Hir 1y ™ € No,vp 1),

H('r|k+1) =0,7€ NZNP'

The state residual set A(T‘kﬂ) and the optimal state set
Y (r|k+1) can be constructed as:

= Co{d(7, 1) i1r € Lo},
Eirikr1) = Co{o 1y it € Lo}

(22)
(23)

A('r\k-‘rl)

constructing the vertices as follows:

s L ()
dolkt1) = Zh (Bt (1)

5“|Tk+1) = Z h(”%fﬁk + ol ¢(i1)wf1\k), 7T € N Np-1),
5(11 Np— 17ZN) ¢ in 511 Np-1
Np‘k‘+1) - NP 1|k+1)



Similarly, define the optimal state xZ‘T‘k) and input set uE‘TI k)
at time £ as

Co{:v(TIkT))*,El s €L}
Co{u ’Lllkt) iy € L}

*
1'(7_

k) € Xy =

*

Wrlky € Ulrpy =

By using the optimal solution at time k, the state set QE(T, k+1)
and input set U(,|,41) at time k + 1 can be constructed as:

Xirppr1) = CofE 1y f1r € L1}, (24)
u('r|k+1) = Co{ﬂz},:fk+1)»il:7' € L‘r}z (25)
constructing the vertices as follows:
- (4) (@)
Z(ojk+1) = Zh Ty TW Wk
i=1

AT1r (4817 )% ir) i *
F ) Zh Dalil + o) oy,

7€ N Np-1),

(Zl N 1 1]\] i IN AEI:N —1
(Np\2+1) o = ¢' L(Np 1417
N (i)*
A(o[k+1) Zh w(i + K,

(4,51.7 )% ir i),
i o) oMy,

A1 _ (i)

Ut _Zh
i—1
TE N[1 Np—2]5

&VN}if\kﬂ) —Kx(l N:Tkﬂ)

Thus, the vertices constructed above satisfy the constraints
at time k+1. Therefore, the constructed solution 6 (k-+1),1(k+
1) can be solved at time & + 1.

The stability of the Algorithm 1 is declared now. Define
the optimal objective function at time k as V(A*(k))
(A*(E)TN(k)A*(k) and at time k + 1 as V(A(k + 1))
(A(k+1))T N (k+1)A(k+1). At time k, the optimal augmented
vector is defined as Hz‘le) and is given by the following
expression:

> 1>

071y = COllYT s ULy Oy s
(rlk) Ve iy Llrlk) Ok 26)

*

iy H iz i)
The augmented vector at time k + 1 is defined as é(ﬂ k1)
27
(28)

9(7\k+1) = COl[’A)/ (r]k+1) ﬁ(r\k+1)76( |k+1)>

Girpiny H(Tlk+1)].

Given that Aoy = D(k)(0yy,) and Aojkr1) = D(k +
1)0(0|k+1) are valid, hence the optimal objective function at
time k£ and time k + 1 is defined as:

V(Noiry) = o))" POojks

i (o O (29)
V(Aoik+1)) = Ook+1))” POojkt1)-

It can be obtained that 0(g|41) = 9?1\1@) = Ce?ouc) + dzllk)’
hence

V(Nowy) = V(Aojisn)

i (30)
> ||z Iy + [[ucom ||, — nd

where n > 0, d = maxgep ||d||,. The system is asymptotically
stable. |

IV. SIMULATION

In this section, a simulation example is given to verify
the efficacy of the data selection method. The data selec-
tion method using controller performance benchmark can be
applied in input-mapping data-driven MPC with uncertain
models. For brevity, it is named input-mapping data selection
with controller performance method(IM-DS-CPM). Consider
that the parameters of the uncertain system (1) are as follows:

[0.8623 0 01472 0

Ao—| 0 08359 0 01052
I 0 06434 0 |’
o 0 0 08130
[0.0647 0
0 0.0647

BO=1""0  oo6s0 |

| 0.0619 0

[0 0 —0.1177 0 0 0
(1) 0 0 0 0 @ |0 0
Aa= 10 0 03163 0|28 = |0 —00204 |

o0 0 0 0 0
AD =—AD, A = _AD.

The disturbance ||d||, < 0.01, state constraints are ||z| <
15, input constraints are ||u| . < 15.

Set the length of historical data M as 6 and the length of
the sliding window Ng as 7. Select an optimal time domain
length Np as 4. The threshold value §, is set as 1. The initial
state is set as xg = [9,11,7.5,8]%, and at the time 70, the
system state is reset to its initial condition. The error weight
matrix @ is diag{2,0.1,6,0.1} and the input weight matrix
R is 0.0115. IM-DS-CPM is compared with the method in
[7], which can be shorted as input-mapping MPC (IM), and
the method in [9], which used a similarity index to check the
similarity between the current data and the past data items.
For brevity, the method [9] is named as input-mapping data
selection with similarity(IM-DS-SIM).

The results can be seen in Fig.2-5. Upon examination of
Fig.4, where the state 3 is assigned the greatest weight, it
is evident that the data selection can accelerate the system.
Consequently, the data-driven selection strategy we have pro-
posed is adept at identifying the most informative data and
improving the performance of the controller.

V. CONCLUSION

This paper proposes a new data selection strategy for data-
driven MPC with uncertain models. The input-mapping MPC
approach uses historical data to linearly represent the system’s
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Fig. 2. The trajectories of state 1 (k).
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Fig. 3. The trajectories of state x2(k).
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Fig. 4. The trajectories of state x3(k).
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Fig. 5. The trajectories of state x4 (k).

current and future states and control inputs. To enhance
controller performance, a data-driven framework is introduced
to evaluate the controller’s effectiveness. Key to this method
is a sliding window mechanism, which identifies data points
that most improve performance. The optimal combination
coefficients of historical data are derived through solving an
optimization problem. The stability of the resulting closed-
loop system is analyzed. The proposed method’s validity is
demonstrated through an example for an uncertain system.
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